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Abstract
Objective: We aim to use large language models (LLMs) to detect mentions of nuanced psychotherapeutic outcomes and impacts than previ-
ously considered in transcripts of interviews with adolescent depression. Our clinical authors previously created a novel coding framework con-
taining fine-grained therapy outcomes beyond the binary classification (eg, depression vs control) based on qualitative analysis embedded within 
a clinical study of depression. Moreover, we seek to demonstrate that embeddings from LLMs are informative enough to accurately label these 
experiences.
Materials and Methods: Data were drawn from interviews, where text segments were annotated with different outcome labels. Five different 
open-source LLMs were evaluated to classify outcomes from the coding framework. Classification experiments were carried out in the original 
interview transcripts. Furthermore, we repeated those experiments for versions of the data produced by breaking those segments into conver-
sation turns, or keeping non-interviewer utterances (monologues).
Results: We used classification models to predict 31 outcomes and 8 derived labels, for 3 different text segmentations. Area under the ROC 
curve scores ranged between 0.6 and 0.9 for the original segmentation and 0.7 and 1.0 for the monologues and turns.
Discussion: LLM-based classification models could identify outcomes important to adolescents, such as friendships or academic and vocational 
functioning, in text transcripts of patient interviews. By using clinical data, we also aim to better generalize to clinical settings compared to stud-
ies based on public social media data.
Conclusion: Our results demonstrate that fine-grained therapy outcome coding in psychotherapeutic text is feasible, and can be used to sup-
port the quantification of important outcomes for downstream uses.
Key words: large language models, BERT, Llama 2, Llama 3, adolescent depression, depression outcomes, mental health. 

Background
Globally, in adolescents aged 10-19 years, the prevalence of 
major depressive disorder and dysthymia is estimated at 8% 
and 4%, respectively.1 Advancing understanding of treat-
ment outcomes is critical in addressing this public health 
problem. In clinical trials and routine specialist care, around 
40% of youth leave treatment without showing meaningful 
improvement in depressive symptoms, which include low 
mood, anhedonia, sleep disruption, suicidality, or irritability, 
defined by the DSM and ICD-11. Less is known about the 
impact of treatment on other outcomes, such as relationships 
or quality of life. Between 2007 and 2017, a systematic 
review of clinical studies on depression found that 94% of 
studies measured depressive symptoms, 52% measured gen-
eral functioning, and less than 10% measured any other 
outcomes.2

Previously, clinical researchers performed a post-hoc analy-
sis of interview transcript data from the qualitative study 
IMPACT-My Experience (IMPACT-ME3), a substudy nested 

within the Improving Mood with Psychoanalytic and Cogni-
tive Therapies (IMPACT) study of the psychological treat-
ment of adolescent depression.4,5 Using qualitative content 
analysis, they produced a systematic and comprehensive 
framework of adolescent depression treatment outcomes, 
identifying 7 broad outcome domains and 29 specific out-
comes of interest.6 Analysis of these outcomes in qualitative 
data could complement traditional quantitative measurement 
of symptom change, providing a more holistic impression of 
how treatment affects depression.

However, manual qualitative analyses of large volumes of 
qualitative data are time-intensive and may not always be fea-
sible. Recent developments in natural language processing 
(NLP), particularly improvements in large language models 
(LLMs), can help address this challenge by automating the 
analysis of large volumes of data. A recent survey demon-
strated that NLP enables automated screening for symptoms 
of several mental disorders from text data,7 though many 
of these studies only address a single binary classification 
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(eg, depressed and non-depressed) or regression (eg, severity). 
Additional limitations are the use of social media data, which 
complicates clinical integration, and lack of work focused on 
adolescents.

In this paper, we demonstrate the feasibility of using LLM 
embeddings as part of models for detecting fine-grained psy-
chotherapeutic outcomes, as well as higher-level domain 
labels. We compare the performance of models operating on 
text embeddings produced with various LLMs used in mental 
health research, including the recently released Llama 3. We 
limit ourselves to open-source LLMs deployable within our 
own servers to eliminate concerns with protected health 
information or personally identifiable information.

Related work
Various NLP techniques have been used to detect mental 
health disorders by automating the analysis of large volumes 
of data. This analysis often entails screening text data for 
mentions of symptoms, as described in a recent survey of 
nearly 400 articles.7 Notably, social media posts are the pre-
dominant data source used (81%),8 followed by interviews 
(7%), EHRs (6%), screening surveys (4%), and narrative 
writing (2%).7 NLP techniques transform text into numerical 
representations, which may include specific linguistic fea-
tures, language representation features, and others. NLP uses 
both traditional machine learning (ML) and deep learning- 
based methods for tasks related to depression, such as risk 
assessment, symptom detection, and more.

Deep learning-based methods have garnered significant 
attention due to their superior performance compared to tra-
ditional ML methods.7 In particular, LLMs have become 
foundational tools for transforming text inputs into quantita-
tive vector representations known as embeddings. In contrast 
to traditional ML, embeddings are learned from data, using 
neural networks or other approaches, without requiring 
explicit human expertise to define them. These embeddings 
can then be used as inputs for classification models that pre-
dict annotations, such as the presence of specific depression 
markers. There are many embedding approaches, such as 
GloVe,9 word2vec,10 and transformer-based models like 
BERT11 and RoBERTa,12 and many have been used for iden-
tifying depression markers.13,14 Deep learning methods are 
generally categorized into convolutional neural network- 
based, recurrent neural network-based, and transformer- 
based approaches.7,15

Transformer-based LLMs, including BERT, RoBERTa, 
Llama,16–18 Mistral,19 and the GPT� series,20 incorporate 
attention mechanisms that manage long-range dependencies 
between segments of text. Traditional NLP methods require 
extensive feature engineering and considerable amounts of 
labeled data. In contrast, LLMs pre-trained on large datasets 
can use transfer learning to perform well on new tasks with 
minimal additional training. Given the limited annotated 
data for adolescent depression, this property is particularly 
useful for our work. Transformers can be fine-tuned for pre-
diction and classification tasks in a variety of domains, 
including depression detection.21–26 Transformer-based mod-
els excel at text classification and sentiment analysis, which 
may translate to reliability and accuracy in identifying symp-
toms and outcomes. Using LLMs aligns our study with 
cutting-edge NLP developments, highlighting the relevance 
and impact of our findings on adolescent depression.

Many previous studies tackle broad binary classification 
problems (ie, depression and control group) or an existing set 
of clinical symptoms. However, the lack of interpretability in 
many models prevents clinicians from relying on the out-
comes of automated screening techniques. The scientific com-
munity has initiated several efforts to improve the clinical 
applicability of ML studies, including the Early Risk Predic-
tion on the Internet (eRisk) workshop, which has been part 
of the Conference Labs of the Evaluation Forum since 2017. 
In 2023, eRisk featured a depression-related task (Task 1)27

that involved ranking sentences based on their relevance to 
each of the 21 symptoms of depression derived from the Beck 
Depression Inventory-II (BDI-II).28 Symptoms included pessi-
mism, thoughts about suicide, or sleep problems, rated on a 
severity scale from 0 to 3. Outside of eRisk, other studies 
aggregate symptoms from different questionnaires (eg, BDI- 
II29,30 and PHQ-931) and transformer-based models (eg, 
BERT) to screen for depression in patients.32 These initiatives 
mainly rely on social media data, which limits clinical applic-
ability due to differences with content targeted or elicited in 
therapeutic settings. Additionally, limited research focuses on 
adolescent participants, whose data can be different in 
aspects ranging from vocabulary to the specific symptoms 
and problems mentioned.

Our work differs from previous research on depression in 
several key ways. First, it focuses on detecting fine-grained 
symptoms, outcomes, and impacts of depression, implement-
ing a framework that aims to capture more nuance than diag-
nosis or clinical symptoms. Furthermore, the labels in the 
study are defined to be particularly relevant to adolescents. 
Finally, we use a dataset from a psychiatric study, rather than 
social media. Additionally, given the sensitivity of the dataset, 
our approach was developed using the latest open-source 
LLMs, such as Llama, rather than commercial ones such as 
GPT or Claude. This measure provides both security and 
affordability to the research community.

Materials and methods
Data
IMPACT-ME interviews
Interviews were taken from IMPACT-ME,6 a qualitative 
study within the IMPACT trial.4 IMPACT examined the effi-
cacy of Brief Psychosocial Intervention (BPI), Cognitive 
Behavioral Therapy (CBT), and Short-Term Psychoanalytic 
Psychotherapy (STPP) for adolescents aged 11-17 diagnosed 
with unipolar Major Depressive Disorder. In IMPACT-ME, 
research psychologists conducted semi-structured interviews 
with patients, parents, and therapists at treatment start, end, 
and 1-year follow-up, exploring therapy experiences and 
observed changes.6

Qualitative analysis and annotation
Krause et al. conducted a secondary qualitative analysis on 
these interviews to explore the range of treatment outcomes 
relevant to patients. Only interviews from the end of treat-
ment were analyzed. These interviewers were transcribed ver-
batim and included pauses, filler words, interruptions, and 
typos. Participants were excluded if any of the interviews 
from patient, parent, or therapist were missing, if treatment 
ended within the first 3 sessions, or if they were referred to 
inpatient care. Of the remaining 34 cases (9 BPI, 9 CBT, and 
16 STPP participants; 102 interviews), the average age was 
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16.2 years (s ¼ 1.5, range¼12-19), and 21 (61%) were 
female. To categorize outcomes, Krause et al. first designed 
an a priori coding framework based on existing taxonomies 
of treatment outcomes. During annotation, outcome-relevant 
passages were extracted, and the coding framework was fur-
ther modified to incorporate new themes. The final frame-
work contained 29 specific outcome categories within 7 high- 
level domains,6 listed and described in Table 1. All annota-
tions were performed by 1 researcher.

Ethical considerations
The original study protocols for the IMPACT trial and the 
IMPACT-ME study were approved by Cambridgeshire 2 
Research Ethics Committee, Addenbrooke’s Hospital, Cam-
bridge, UK (REC Ref: 09/H0308/137) and were performed in 
accordance with the ethical standards laid down in the 1964 
Declaration of Helsinki and its later amendments. All partici-
pants above the age of 16 provided informed written consent. 
Parental consent and youth assent were obtained for younger 
adolescents.

Dataset splitting
We split the dataset of 34 subject cases into a training set of 
26 subjects and a test (holdout) set of 8 subjects. Transcripts 
were grouped by subject (ie, by triplets of interviews relating 
to each adolescent participant) to ensure that models were 
not trained and tested on data referring to the same adoles-
cent. We conducted 4-fold cross-validation (CV) on the train-
ing set of 26 cases. In each fold, we excluded all text from 
several cases and trained the model on the remaining cases. 
The test set, consisting of 8 cases, was manually balanced to 
include both positive and negative examples for all specific 
outcomes. The test set was not used in this paper and is 
reserved for future evaluation. Each case generated multiple 
text blocks, ranging from approximately 10 000 to 25 000 
depending on the text segmentation used (Section 
“Transcript Segmentations”). A text block may be positive 
for multiple labels. When all positive labels were combined, 
there were 1543, 732, and 840 positive examples in the Orig-
inal, Monologue, and Turns segmentations, respectively, 
with around 10 times as many negative examples. The num-
bers of positive examples across all labels are provided in 
Supplementary Material, Table S1.

Preprocessing
Conversion to labeled text blocks
Before analysis, empty lines and header information, such as 
subject ID and interviewer ID, were removed from the tran-
scription files. We then divided the transcripts into chunks of 
text called “speaker blocks.” Each speaker block represents a 
portion of the text spoken by 1 person. These blocks were 
indicated by the start of a new paragraph in the transcripts. 
The original annotations by Krause et al. (from the IMPACT- 
ME study) were made by highlighting specific parts of the 
transcript that were relevant to a particular outcome. These 
highlighted excerpts could begin or end anywhere within a 
speaker block, meaning that a single block could contain 
multiple highlighted excerpts related to different outcomes. 
For our analysis, we labeled an entire speaker block as 
“positive” if any part of it contained text that was flagged as 
relevant (positive) to an outcome. This means that even if 
only a small portion of the speaker block was relevant, the 
whole block was considered positive for that outcome.

Transcript segmentations
Original
The initial segmentation of text generated from annotations, 
containing 32 520 blocks, included various uninformative 
text segments. Outcome-relevant dialogue would often be 
interspersed with interjections, acknowledgments, or requests 
for elaboration, for example, an interviewer saying “okay” 
or “yes” to encourage a patient would be included within the 
excerpt and labeled as positive in our dataset. To address 
these uninformative text blocks, we created 2 additional seg-
mentations of the transcript, Monologue and Turns, 
described below.

Monologue
We discarded all interviewer speech and blocks with 12 or 
fewer characters. We manually determined the cutoff by 
examination of the labeled text in the training set. By only 
retaining non-trivial interviewee text, we aimed to produce 
“monologues” about the study experience, although some 
interviews, such as those conducted jointly with both parents 
of a patient, retained multiple interviewees interacting in dia-
logue. Of the original 32 520 blocks, 12 941 were retained in 
this filtration.

Turns
We partitioned blocks at each interview utterance, grouping 
together sequential pairs of utterances by interviewer and 
interviewee into “turns” of the conversation. By concatenat-
ing blocks, the Turns segmentation kept informative inter-
viewer questions together with short interviewee responses 
that were otherwise uninformative (eg, “I: How has your 
mood been?” “P: Fine. . .”). For interviews with multiple 
interviewees, all utterances between interviewer utterances 
were concatenated into the same turn. This process produced 
16 139 blocks of text. Table 2 illustrates how segmentations 
might be created from a passage. However, this example 
lacks many of the interview transcripts’ idiosyncrasies, such 
as inclusion of hesitations and filler words.

The training set contained 25 852 blocks in the Original, 
10 008 blocks in Monologue, and 12 814 blocks in Turns. 
Full counts of the number of positive examples for each label 
in the complete and training set can be found in Supplemen-
tary Material, Table S1.

Methods
Our approach consisted of 2 stages. First, interview tran-
scripts from IMPACT-ME were converted into quantitative 
embedding representations using LLMs. Next, logistic regres-
sion models were trained to predict the text labels. The 2 sub-
sections describe each stage in more detail.

LLM embeddings
In the first stage, text from each block was passed to 
transformer-based LLMs to be converted into embeddings. 
Text was converted into a sequence of tokens—words or 
word fragments—using model-specific tokenizers. Sequences 
of tokens were passed to the LLMs, and the embedding was 
extracted from the last hidden layer using the PyTorch imple-
mentation of the Hugging Face Transformers python 
library.33,34 The final layer is a tensor with dimension 
b× t×d, where b is the batch size, t is the number of tokens, 
and d is the hidden dimension. Here, b¼ 1 because we pass 
each block alone, t depends on input sequence length and the 
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tokenizer, and d varies by model, described in Table 3. Aver-
aging across tokens produces a final d-dimensional embed-
ding vector representing each text block. Aside from 
the source corpus, the main differences between models are 

(1) maximum sequence length, or the number of tokens 
a model can effectively represent before truncation, (2) the 
hidden dimension, or dimensionality of the internal 
embedding vectors, and (3) the number of parameters, 

Table 1. Names of the labels and a brief description.a

Abbrev. Name Description

Any A[ . . .[G
A Symptom change A1 [ . . .[A8

A1 Mood and affect Less low and depressed; low mood is more fleeting, less overwhelming.
A2 Anger and aggression Less angry, irritable, aggressive; fewer outbursts; better able to manage temper.
A3 Appetite Healthier appetite and weight.
A4 Sleeping and energy Healthier sleep patterns and energy levels.
A5 Self-harm Less self-harm (eg, cutting, trichotillomania)
A6 Suicidality Reduced suicidal ideation and behavior
A7 Anxiety Fewer fears, worries, panic attacks; less social anxiety; engaging in activities
A8 Other comorbidities For example, substance abuse or obsessive-compulsive symptoms

B Coping and self-management B1 [B2 [B3
B1 Behavioral activation More active; returning to hobbies or engaging in new activities; sense of purpose, 

routine, and structure
B2 Coping and resilience Specific coping strategies, understanding of feelings, thoughts, and behaviors; 

anticipating and managing challenges; more resilient, greater self-efficacy, sense of 
control

B3 Cognition and behavior Challenges negative automatic thoughts, more flexible thinking styles
C Functioning C1 [C2 [C3 [C4

C1 Global functioning Better function across range of life domains, engages in typical adolescent activities
C2 Executive functioning Able to get things done; improved concentration, motivation, planning, 

organization
C3 Academic and vocational functioning Attends school more regularly; works more effectively in school, achieves better 

results
C4 Social functioning More outgoing and talkative, more present within friendship groups, more socially 

connected; easier to make conversation, relate to others, be mindful of others’ 
feelings

D Personal growth D1 [ . . .[D6
D1 Assertiveness Better able to stand up for needs and opinions, overcome urge to please, can express 

disagreement or disapproval when appropriate
D2 Autonomy and responsibility More independent, takes responsibility for life and actions
D3 Identity Finding out who they are and how to be themselves around other people; less 

idealized self-images that can accommodate both positive and challenging 
personality traits; positive and negative feelings

D4 Processing past and present Making sense of challenging past or ongoing experiences such as bereavement, 
parental divorce, or family conflict

D5 Confidence and self-esteem More confident, less insecure, less vulnerable to judgment, higher self-regard
D6 Feeling seen and seeing differently Feeling listened to, understood, or cared for; experiences of being worth of 

another’s attention; new perspectives; opportunity to release feelings, thoughts or 
memories

E Relationships E1 [ . . .[E5
E1 Ability to talk More able to talk about feelings and thoughts, which helps deepen relationships; 

stronger support network facilitates opening up
E2 Family functioning and relationships Getting on better with their family: less conflict, better understanding from family; 

easing of entrenched tensions between family members; families communicate more 
openly; role within the family system clarified

E3 Friendships Reactivation or deepening of existing friendships, expanding friendship groups or 
changing friends by turning toward more supportive friendships

E4 Peer relationships Getting on better with peers in school
E5 Romantic relationships Getting on better with romantic partner

F Wellbeing F1 [ F2 [ F3
F1 Peace of mind Calmer, more balanced, relaxed, and carefree; feeling as if a weight had been lifted 

off their shoulders; more accepting of things that cannot be changed
F2 Optimism More positive and optimistic outlook into their lives and the future
F3 Future orientation Can make plans for the future and have goals

G Parental support and wellbeing G1 [G2
G1 Parental support Parents are better able to understand their child’s difficulties and more aware of 

how their parenting practices may contribute to these difficulties; parents learn to 
support and parent their child more effectively

G2 Parental wellbeing Parents feel less guilty, isolated, stressed, and worried; parents feel reassured, 
supported, and able to express their own frustrations and issues

a Unless otherwise indicated, assume descriptions refer to changes with the adolescent patient.
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roughly proportional to the number of internal transforma-
tions before reaching the final embedding vector. We describe 
the LLMs we used below, with details summarized in  
Table 3.

Bidirectional Encoder Representations from Transformers
Bidirectional Encoder Representations from Transformers 
(BERT)35 is widely employed in various NLP tasks, including 
text classification and named-entity recognition. By condi-
tioning on both the left and right context of each token, 
BERT can generate high-quality embeddings that encode rich 
semantic information. We used the base pre-trained uncased 
(case-insensitive) BERT model provided by the original 
authors, which contains 12 layers, 768 hidden dimensions, 
and 110 million parameters.

MentalBERT
MentalBERT is a domain-specific model initialized from a 
general BERT model and then further pretrained on text rele-
vant to mental health.36 The pretraining dataset includes a 
range of subreddits within the mental health domain, such as 
“r/depression,” “r/SuicideWatch,” “r/Anxiety,” “r/off-
mychest,” “r/bipolar,” “r/mentalillness,” and “r/ 
mentalhealth.” Evaluation indicates that MentalBERT out-
performs BERT and ClinicalBERT (pretrained on PubMed 
data) in classifying mental health conditions, including 
depression, stress, and anorexia.36 We used the base uncased 
MentalBERT model, which uses the same architecture as 
BERT base uncased.

MentalLongformer
MentalLongformer is a domain-specific model based on 
Longformer.37 Longformer is a modified transformer archi-
tecture designed to effectively handle long text sequences. Its 
modified self-attention mechanism scales linearly rather than 

quadratically with sequence length, combining local win-
dowed attention with task-motivated global attention. Upon 
its release, it outperformed previous models in autoregressive 
language modeling tasks involving long sequences.38 Mental-
Longformer was pretrained using the same mental health 
dataset as MentalBERT, described above.37

Llama 2
Large Language Model Meta AI (LLaMA, later Llama) is a 
series of autoregressive LLMs developed by Meta AI.16,17

LLama models are state-of-the-art open-source LLMs for 
general applications. Llama 217 inherits its pre-training con-
figurations and model structure from Llama 1.16 Llama 2 
incorporates RMSNorm for pre-normalization, uses the Swi-
GLU activation function, and integrates rotated position 
embeddings. LLama 2 diverges from LLaMA 1 by extending 
the context length from 2048 to 4096 and introducing 
Grouped Query Attention (GQA). Llama 2 weights are avail-
able only upon request to Meta AI, unlike the 3 publicly 
available models above. We generated the embeddings using 
Llama 2-7B, the smallest base model in the series.

Llama 3
Compared to Llama 2, Llama 3 uses a tokenizer with a 
vocabulary of 128K tokens, enhancing language encoding 
efficiency and resulting in improved model performance.18

To increase the inference efficiency of Llama 3 models, GQA 
was implemented in both the 8B and 70B versions. The mod-
els were trained on sequences of 8192 tokens, extending the 
context length from 4096 in Llama 2. A mask was used to 
ensure self-attention remains within document boundaries. 
We used the Llama 3-8B base model to generate the 
embeddings.

Training classification models
To classify labels, we trained logistic regression models on 
the d-dimensional averaged embedding vector for each pas-
sage. Logistic regression models were trained with Python’s 
scikit-learn using L2 penalty, balanced class weighting, and 
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno 
solver.39 Models were trained and evaluated within a 4-fold 
CV loop. For each of the 4 test folds, the C hyperparameter 
of logistic regression was tuned with inner 3-fold CV, using 
the same fold partitions as the outer 4-fold CV. We searched 
16 possible values of C: ð0:0001;0:0005;0:001;0:005; 0:01;
0:05;0:1;0:5;1:0;5:0;10:0;50:0;100:0;500:0;1000:0;5000:0Þ. 
Data were grouped by subject ID and stratified by label. 
Models for labels A8, E4, and E5 could not be trained 
because fewer than 4 subjects were present in the training 

Table 2. A comparison between how blocks would be formed between the Original, Monologue, and Turns segmentation.a

Original Monologue Turns

I: How are you? I: How are you?
P: Ok. . . P: Ok. . .

I: Just ok? I: Just ok?
P: Not feeling the best about school. P: Not feeling the best about school. P: Not feeling the best about school.
I: Why? I: Why?
P: I hate this group project. P: I hate this group project. P: I hate this group project.
I: Mmhmm. I: Mmhmm.
P: They always ignore me so  
I have to work alone.

P: They always ignore me so  
I have to work alone.

P: They always ignore me so  
I have to work alone.

a A change in text color indicates the boundary of the input block. The example text is not based on any interview in the dataset.

Table 3. Maximum sequence length (max. seq.), hidden dimension size 
(hidden dim.), and millions of parameters (params) for the LLMs used to 
generate embeddings.

Model Max. seq. Hidden dim. Params (106)

BERT 512 768 110
MentalBERT 512 768 110
MentalLongformer 4,096 768 102
Llama 2-7B 4,096 4,096 7,000
Llama 3-8B 8,192 4,096 8,000

Abbreviations: BERT ¼ Bidirectional Encoder Representations from 
Transformers; LLM ¼ large language model.
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data. To adjust the loss function for the imbalance between 
positive and negative examples in every label, errors in posi-
tive examples were multiplied by the ratio of positive to nega-
tive examples in that label.

Results
Classification performance for each label
Our first goal was to investigate classification performance of 
each of the embedding models for our 39 binary labels (31 
specific outcomes, 7 high-level domains, and presence of any 
outcome). Of note, for the specific outcome labels, results are 
reported for only 28/31 labels (ie, 36/39 binary labels), as 
three labels did not include enough subjects for 4-fold CV. 
For each model, we computed the area under the ROC curve 
(ROC AUC) for each test fold and reported the average ROC 
AUC across folds.40 Classification performance fell within 
0.6-0.9 for the Original segmentation and 0.7-1.0 for the 
Monologue and Turns segmentations, as shown in Figure 1 
and Table 4.

In the Original segmentation, D1 performs the best across 
all models. In Monologue, the best performer was one of D3 
or F2. In Turns, A3 and D3 performed well for all models, 
but the top performer for MentalLongformer was F2. For 
any combination of model and segmentation, the lowest per-
former tended to be D2 or G1, with A2 performing poorly in 
Original. Many labels were inconsistent across models and 
segmentations. For example, A5 was in the top 4 for all mod-
els in the Original segmentation, but underperformed in 
Monologue and Turns in non-Llama models. The worst clas-
sified labels tended to have high variance in performance 
across embedding models, though the relative rankings are 
consistent. For every embedding, the averaged ROC AUC for 
models of “Any” outcome were between 0.75 and 0.85. Fur-
ther details on relative classification performances can be 
found in Supplementary Material, Table S2, and macro- 

averaged F1 scores are described in Supplementary Material, 
Table S3.

Statistical comparison of embedding models
Our second goal was to determine whether embeddings from 
a particular LLM had consistently better performance than 
others. For our 28 specific outcomes, we tested the null 
hypothesis of no difference in model performance with the 
Friedman test.41 We excluded aggregate labels, that is, the 7 
domain labels and the “Any outcome” label, to avoid 
double-counting. Friedman test results were Q3 ¼ 8:571;p¼
0:0356 for Original; Q3 ¼ 13:16;p¼ 0:00431 for Mono-
logue; and Q3 ¼ 12:56;p¼ 0:00570 for Turns. At signifi-
cance level α¼ 0:05, the Friedman test results supported 
rejection of the null hypothesis of model equivalence, and we 
proceeded with the post hoc Bayesian comparison tests.42,43

The Bayesian post hoc test indicated that both Llama mod-
els had probability ≥0:94 of outperforming any other non- 
Llama model (Figure 2). BERT had a <0:04 probability of 
outperforming any model except for MentalLongformer, 
where the probability of BERT being better was 0.14, 0.15, 
and 0.08 for Original, Monologue, and Turns, respectively. 
Llama 2-7B and Llama 3-8B had a 0.84, 0.71, and 0.92 prob-
ability of practical equivalence for Original, Monologue, and 
Turns. MentalLongformer and MentalBERT as well as BERT 
and MentalBERT had practical equivalence probabilities of 
0.19-0.38 in Original and Turns. All other pairwise model 
comparisons returned ≤0:06 probability of practical 
equivalence.

Error analysis
We identified 3 primary reasons for misclassifications and 
provide examples in Table 5. These cases do not partition all 
errors, as some text blocks may be misclassified for multiple 
reasons. First, misclassifications occurred with short text 
blocks. Short sentences often lack the contextual richness 

Figure 1. Average ROC AUC performance for logistic regression models. Labels are grouped vertically by domain (and color) and horizontally by 
segmentation (right axis). Numbers indicate the performance of each specific outcome within a domain, black letters the domains, and the red X 
represents “Any” of the outcomes.
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necessary for accurate classification, leading to incorrect 
labeling. Second, misclassifications appeared when there 
were no mentions of the symptom within the text block. This 
issue typically resulted from segmentation errors, where rele-
vant information was contained in a previous conversation 
block but was not carried forward to the current segment. 
Finally, another source of error was the use of subtle, vague, 
or indirect language. For example, people may discuss 
depressive experiences without referring to the patient’s own 
experience, making it challenging for the model to correctly 
identify and classify the content. Additionally, there are label- 
specific errors. We found that labels G1: Parental Support 
and G2: Parental Well-being consistently performed poorly 
across models and segmentations (Supplementary Material, 
Table S2). This error may arise due to data processing. When 
creating embeddings, we concatenate all interviewers and do 
not incorporate additional information about the subject ID 
or the interview type (adolescent patient, parent, or thera-
pist). This measure avoids data leakage but also impedes the 
model from disentangling when parents are referring to them-
selves or being referred to.

Discussion and conclusion
The current objective for this research project is to develop 
robust models that can detect fine-grained symptoms and 
outcomes in interviews or autobiographical text. The ulti-
mate goal, however, is to apply the models to text from other 
studies and estimate how much symptoms and outcomes not 
captured in standard questionnaires drive the impact of 
depression, as well as capturing changes as a result of therapy 
that may go beyond traditional symptom-based outcome 
measures. The results suggest that detection is feasible across 
a wide range of outcomes and at a level of performance that 
would make it reasonable to use model predictions as a com-
plementary measure to standardized questionnaires. To make 
this possible, we plan to release the trained models and make 
them available to the wider research community. This would 
allow validation over different patient populations and for 
more clinical researchers to provide input on the quality and 
robustness of the models across outcomes.

We find that LLM embeddings allow for effective classifi-
cation of outcomes, even for labels with few positive exam-
ples, and could be useful for future work on understanding 

Table 4. Averaged ROC AUC across outer k-fold cross-validation.

Sgmnt. Original Monologue Turns

Model BERT MBERT MLong L2-7B L3-8B BERT MBERT MLong L2-7B L3-8B BERT MBERT MLong L2-7B L3-8B

Label
Any 0.735 0.737 0.742 0.758 0.757 0.799 0.811 0.822 0.829 0.826 0.806 0.809 0.817 0.844 0.843
A 0.732 0.730 0.766 0.753 0.755 0.811 0.822 0.856 0.844 0.846 0.850 0.852 0.851 0.876 0.858

A1 0.767 0.772 0.782 0.780 0.773 0.815 0.820 0.851 0.836 0.831 0.815 0.834 0.815 0.832 0.830
A2 0.562 0.566 0.671 0.695 0.618 0.757 0.758 0.794 0.851 0.849 0.715 0.754 0.750 0.815 0.792
A3 0.777 0.760 0.741 0.798 0.779 0.910 0.962 0.956 0.909 0.950 0.947 0.937 0.955 0.968 0.961
A4 0.777 0.731 0.785 0.831 0.827 0.895 0.897 0.908 0.954 0.937 0.923 0.932 0.914 0.955 0.945
A5 0.861 0.843 0.856 0.923 0.919 0.801 0.707 0.678 0.880 0.925 0.657 0.780 0.684 0.949 0.932
A6 0.818 0.725 0.791 0.845 0.780 0.806 0.736 0.721 0.873 0.812 0.866 0.771 0.800 0.794 0.755
A7 0.861 0.819 0.802 0.699 0.752 0.804 0.829 0.696 0.773 0.812 0.846 0.854 0.831 0.827 0.851

B 0.717 0.734 0.726 0.757 0.746 0.816 0.808 0.819 0.850 0.846 0.795 0.811 0.816 0.864 0.866
B1 0.615 0.619 0.604 0.690 0.696 0.798 0.752 0.739 0.846 0.836 0.715 0.711 0.710 0.786 0.829
B2 0.762 0.777 0.786 0.790 0.802 0.840 0.854 0.861 0.873 0.869 0.839 0.844 0.860 0.879 0.868
B3 0.702 0.746 0.703 0.780 0.738 0.863 0.890 0.890 0.933 0.929 0.727 0.800 0.814 0.864 0.842

C 0.708 0.714 0.710 0.739 0.733 0.749 0.782 0.787 0.816 0.793 0.784 0.798 0.804 0.834 0.828
C1 0.720 0.791 0.845 0.751 0.817 0.899 0.956 0.898 0.907 0.953 0.772 0.926 0.819 0.815 0.830
C2 0.607 0.659 0.647 0.697 0.716 0.805 0.858 0.791 0.850 0.881 0.796 0.814 0.822 0.829 0.865
C3 0.675 0.683 0.715 0.704 0.669 0.777 0.776 0.833 0.778 0.790 0.788 0.779 0.826 0.799 0.776
C4 0.795 0.781 0.785 0.758 0.755 0.832 0.861 0.850 0.852 0.837 0.853 0.881 0.846 0.863 0.868

D 0.796 0.785 0.790 0.782 0.787 0.863 0.870 0.888 0.864 0.859 0.848 0.850 0.865 0.846 0.847
D1 0.907 0.922 0.956 0.923 0.942 0.918 0.925 0.942 0.900 0.922 0.928 0.933 0.962 0.949 0.944
D2 0.573 0.624 0.569 0.528 0.537 0.690 0.696 0.679 0.689 0.626 0.666 0.608 0.591 0.547 0.546
D3 0.830 0.841 0.861 0.876 0.903 0.962 0.974 0.953 0.957 0.954 0.937 0.946 0.939 0.943 0.955
D4 0.765 0.785 0.758 0.771 0.733 0.818 0.898 0.909 0.919 0.865 0.829 0.855 0.854 0.896 0.882
D5 0.807 0.838 0.839 0.802 0.805 0.921 0.936 0.951 0.892 0.900 0.911 0.915 0.943 0.900 0.917
D6 0.752 0.742 0.766 0.775 0.752 0.793 0.804 0.846 0.819 0.826 0.794 0.801 0.822 0.864 0.869

E 0.761 0.762 0.782 0.784 0.776 0.820 0.832 0.851 0.859 0.855 0.826 0.823 0.833 0.845 0.843
E1 0.737 0.775 0.680 0.699 0.709 0.816 0.824 0.687 0.782 0.811 0.841 0.840 0.739 0.705 0.782
E2 0.721 0.740 0.731 0.760 0.747 0.863 0.879 0.871 0.900 0.887 0.792 0.820 0.804 0.785 0.797
E3 0.737 0.776 0.776 0.757 0.750 0.805 0.842 0.798 0.802 0.758 0.825 0.814 0.815 0.846 0.834

F 0.754 0.761 0.758 0.812 0.806 0.892 0.915 0.901 0.914 0.914 0.876 0.880 0.881 0.933 0.920
F1 0.759 0.762 0.819 0.795 0.825 0.890 0.901 0.868 0.922 0.937 0.835 0.879 0.862 0.918 0.922
F2 0.848 0.871 0.877 0.830 0.828 0.940 0.967 0.985 0.961 0.941 0.869 0.916 0.972 0.940 0.930
F3 0.798 0.784 0.785 0.816 0.810 0.890 0.870 0.892 0.923 0.924 0.888 0.877 0.843 0.921 0.899

G 0.653 0.665 0.565 0.658 0.683 0.772 0.769 0.697 0.775 0.799 0.727 0.692 0.627 0.752 0.794
G1 0.715 0.687 0.476 0.629 0.672 0.595 0.695 0.797 0.879 0.792 0.580 0.592 0.695 0.885 0.814
G2 0.636 0.653 0.571 0.663 0.648 0.747 0.760 0.691 0.772 0.780 0.719 0.693 0.611 0.736 0.736

Abbreviations: L2-7B ¼ Llama 2-7B; L3-8B: Llama 3-8B; MBERT ¼MentalBERT; MLong ¼MentalLongformer; Sgmnt. ¼ segmentation.
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the holistic experience of depression and its treatment. Across 
the 36 labels considered, performance was never below an 
average ROC AUC of 0.60 for every model within a segmen-
tation, and generally much higher than that. Given these 
results, we believe that classifiers using LLM embeddings as 
inputs could prove useful for detecting fine-grained out-
comes. On the other hand, although we propose a few broad 
reasons for errors in labeling, it is still unclear why specific 
labels were easier or harder to classify. Even within the same 
domain, specific outcomes can run a wide range, for example, 
D3: Identity being best overall while D2: Autonomy is worst 
overall. Although we can identify patterns in these labels, 

such as D3 appearing in the more consistent terminology of 
therapists vs D2 appearing in more diverse or indirect terms 
from parents, we have not developed robust clinical interpre-
tations of these results that are consistent across all label dif-
ferences. The relative performances of aggregated labels, such 
as labels for high-level domains A through G, tend to be con-
sistent across models within a segmentation, suggesting that 
some variability may be due to the small number of positive 
examples.

The Bayesian comparison test between models suggests 
that, of the models investigated, Llama models produce more 
informative embeddings for classification. Llama 2-7B and 

Figure 2. Bayesian model comparison test, with a region of practical equivalence of 0.01. Results for each segmentation are grouped by row. (Left, blue) 
Probability that model A (y-axis) outperforms model B (x-axis). (Right, red) Probability of model A and model B being practically equivalent.
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Llama 3-8B have a high probability of practical equivalence, 
which is expected considering their architectural similarities. 
The non-negligible probability of practical equivalence for 
MentalBERT and MentalLongformer is also unsurprising, 
considering the models are pre-trained with the same set of 
mental health data. MentalBERT, though fine-tuned on 
domain-specific data, only has a high probability of outper-
forming BERT on Monologue (0.98) and has a moderate 
probability of practical equivalence on Original and Turns 
(0.32, 0.38). Additionally, although the Bayesian comparison 
test suggests that Llama models outperform the other models 
tested, the advantage is not very large. Other concerns, such 
as resource usage, may be a deciding factor in choosing an 
embedding model for different tasks. Llama 2-7B and Llama 
3-8B, for example, require a GPU for inference, while BERT, 
MentalBERT, and MentalLongformer can run on a few CPU 
cores.

The k-fold CV results provide reasonable estimates of 
model performance in new participants, given that we have 
reported on all the experiments that we have carried out. 
Nevertheless, the final analysis of variance and generalization 
of the models should be performed on the test set, which we 
are currently withholding to allow for further model develop-
ment on the training set. Testing on the holdout will produce 
performance estimates for sparse labels that we could not 
model during the k-fold CV step. The dataset used in this 
work is unique because of the fine granularity of the coding 
framework and the effort required for annotation. Thus, we 
do not make claims on generalization of labeling perform-
ance beyond this population. Instead, we present this work as 
a demonstration that combining state-of-the-art text embed-
dings and logistic regression is a robust approach that can 
effectively handle fine-grained labels.

A limitation of our work is that results may be biased due 
to the influence of the annotator or the LLM. As previously 
mentioned, annotation was performed by a single researcher, 
who also led the research for developing the coding frame-
work. An additional rater would be able to provide addi-
tional perspective or verify that the coding guidelines lead to 
reproducible results. However, this work is primarily con-
cerned with developing label classifiers rather than testing the 
reliability of the coding framework, and thus steps to reduce 
rater bias were not in scope. Future work with this frame-
work may include multiple annotators to reduce the influence 
of any single researcher’s perspective. In addition to bias 
from human labeling, bias may also be introduced by LLMs. 

Because LLMs are usually trained on written text, they may 
not be effective at embedding transcribed conversational 
speech. LLMs may fail to accurately encode relevant semantic 
information or misinterpret vernacular language, leading to 
incorrect or inconsistent labeling. It is also unclear how 
reported performance reflects idiosyncrasies of this dataset. 
The small sample size, both in total positive labels and num-
ber of subjects, may impede applying these particular models 
to other datasets. Additionally, verbatim transcription of dia-
logue is not common in written text or in machine transcrip-
tion, which often exclude pauses, filler words, and accent 
indicators.

Given the vulnerability of adolescents with depression, or 
mental health disorders in general, special care is warranted 
in future work on this topic. We do not recommend use of 
third-party language models with this or any similar dataset, 
unless there are contractual guarantees satisfying require-
ments about the handling of personally identifying informa-
tion or private health information. Additionally, special care 
should be taken to ensure that any model concerned with 
classification or identification of sensitive health information 
does not produce biased or discriminatory results. This 
requires explicit effort to ensure equitable data collection, 
both so that training sets do not introduce bias, and so that 
results can be rigorously evaluated for potentially harmful 
outcomes before being broadly applied.

Future work will aim to improve the extraction of informa-
tion from text and increase labeling accuracy. Text represen-
tation can be improved through, for example, embeddings 
from more advanced models or by fine-tuning. We also plan 
to make models more generalizable through supplementing 
the training data with additional synthetic examples para-
phrased by LLMs from existing annotations. Additionally, 
while current work focuses on labeling using numeric model 
embeddings, labels could also be generated using text-based 
instruction models, such as Llama 3 Instruct. Appropriate 
prompt engineering may allow models to better attend to rel-
evant features in the transcripts and produce accurate labels. 
However, prompt engineering zero-shot or few-shot 
responses requires additional data engineering (eg, through 
generating artificial examples) to prevent data leakage. Fur-
thermore, calculating ROC AUCs comparable to our current 
models requires the production of estimates of LLM predic-
tion confidence, which require in turn extensive development 
and validation efforts. Therefore, this line of research is out-
side the scope of our current work.

Table 5. Examples of misclassified text blocks, separated by 3 observed reasons and 2 types of errors.

Errors Reason Label Transcript

FP Short A1: Mood and affect I: Yeah. P: So yeah so.
FN Short E1: Ability to talk I: Right. . . P: But we haven’t got that anymore. . .

FP No mention B2: Coping and resilience I: Okay. . . so is that sort of following your sort of feeling quite emotional. . . P: Yeah. . .

FN No mention F2: Optimism I: yeah. . . in what way. . . P: I’ve sort of got like a different. . . mindset and. . .

I’ve looked back on it and just thought a lot I guess. . .

FP Subtle mention A7: Anxiety I: for the first one. . . P: just sort of like erm. . . just mainly to do with the feelings  
and emotions so like. . . you know say the disappointment of um. . . not. . .

learning in GCSEs and then going for the exam mark could affect me in a  
certain way, or the fact that I wouldn’t be able to do sports bothered  
me in a certain way. . .

FN Subtle mention F3: Future orientation I: oh great. . . P: she can see a result that she’ll be a qualified something at the  
end and then she can earn money. . .

FP ¼ false positives; FN ¼ false negatives.
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Finally, this study is part of an interdisciplinary research 
approach that integrates computational methods (LLMs) 
with clinical applications focused on depression outcomes in 
adolescents, with a view on producing tools that can eventu-
ally be deployed by other groups. Using a unique coding 
framework derived from annotated interviews with adoles-
cents, parents, and therapists, this research goes beyond 
coarse binary classification tasks to address nuanced out-
comes relevant in clinical settings. Our work contributes to 
our understanding of how depression impacts adolescents 
and also shows the potential of advanced computational 
techniques to support clinical psychiatry. By involving 
researchers from diverse backgrounds (eg, mental health pro-
fessionals, psychologists, computer scientists, neuroscientists, 
and statisticians), institutions, and countries, we highlight the 
importance of directing technical development toward real 
clinical problems.
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